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In order to image a source or a scatterer embedded in a three dimensional solid, acoustic/elastic
wave data from an actual experiment are time reversed and backpropagated through a numerical
model of the medium. The model makes use of estimates for the elastic constants of the laboratory
solid. These estimates may not be very precise, for example, due to experimental uncertainties. Poor
characterization of the medium leads to the degradation of the time reversal focus, therefore, to poor
medium imaging. In this work, we report on the results of investigating the time reversal focus
degradation as the estimates depart from the real values. Very small deviations from the medium’s
actual elastic constants degrade the time reversal focus dramatically. However, decreasing the total
duration of the signals used for time reversal can attenuate the degradation in some cases. We
propose a new method to compensate for the deviations of the model medium’s elastic constants
from the actual values. Finally, we explore the effects of scatterers that may exist in the laboratory
medium, but are not included in the model medium, and show that their presence does not produce
significant effects on the time reversal focus. © 2009 American Institute of Physics.
#doi:10.1063/1.3269718$

I. INTRODUCTION

Time reversal !TR" acoustics !TRA"1–3 provides the
means for locating, in space and time, sources, either active
or passive, i.e., scatterers, of elastic and electromagnetic
waves. These techniques rely on the basic procedure of TRA,
termed the time reversal process !TRP".4 In the process, a
source, in or adjacent to a medium, generates a wavefield
#forward propagation !FP" stage$. A set of sensors !from one5

to an array of N, where N may be large1" records the signals
due to the propagated wavefields. These signals are then time
reversed and rebroadcast from the same sensors, now acting
as sources #TR backward propagation !TRBP" stage$. When
the medium is lossless, the wave equation is invariant for
temporal inversion. When the spatial reciprocity principle
holds, the rebroadcast wavefields focus at the original
source!s" location!s", approximately reconstructing the origi-
nal source disturbance. TRP also remains valid in the case of
weakly attenuative media, satisfying the spatial reciprocity
principle.4

TR can be exploited for imaging purposes if the spa-
tiotemporal evolution of the TRBP wavefields is recorded.
An imaging condition, i.e., the procedure for constructing the
image of the source, is then applied to create the source
image.

A similar approach has been developed and used in the
field of geophysical prospection !seismic imaging" for more
than 30 years, under the name of reverse time migration

!RTM".6,7 There is a significant difference between RTM and
the imaging procedure exploiting the TRP: in the former,
both the FP and TRBP wavefields need to be recorded, not
only the TRBP one. Indeed, the RTM imaging condition, in
the basic form, consists of calculating, at each location of the
spatial sampling grid, the temporal cross correlation of the
FP and TRBP wavefields. On the contrary, imaging methods
in TRA usually require only the TRBP wavefields.

Many TRA imaging techniques have been developed and
deployed for practical applications. For example, using ultra-
sound for imaging scatterers, either linear, such as inhomo-
geneities or voids,8,9 or elastically nonlinear, such as
microcracks.10–14 Other applications are in the fields of seis-
mology !locating earthquake sources and source
characterization",15,16 ocean acoustics !locating targets",17

and microwave imaging.18,19 Some of these techniques ad-
dress specific problems in locating active source!s"/
scatterer!s", such as to selectively find the position of a
source in the presence of an unknown number of sources,8,20

including the case of weak sources masked by stronger
ones.21,22

The need to record the spatial/temporal evolution of one
TRBP wavefield is a potential limitation for imaging by
TRA. For example, in nondestructive evaluation applica-
tions, the wavefields can normally be measured only on the
surface of the specimen so that the imaging is restricted to
the surface. When the active source!s" or scatterer!s" is!are"
embedded in the bulk of a three dimensional !3D" volume
!which is almost always the case in the geophysical context",
a viable alternative consists of a computational method:23 the
TRBP stage is performed via a numerical simulation, adopt-
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ing a realistic model of the propagation medium and using
the experimentally recorded FP signals as time-evolving
boundary conditions. In RTM, also the FP stage needs to be
simulated numerically using a realistic model of the illumi-
nation source.7

The success of this approach, exploiting numerical simu-
lations instead of laboratory/field measurements, relies on
the following three fundamental assumptions:

• the model used for the simulation takes into account
the complexity of the structure of the medium and of
the wave propagation process;

• the sources of the TRBP simulations are modeled
properly; and

• the physical parameters !elastic moduli, density,
boundary conditions, etc." of the simulated medium
approximately match the actual physical properties.

The first issue does not constitute a significant problem.
Existing wave propagation models can take into account
complex rheologies and structured geometries.24 The second
issue is not as important as it may appear due to the robust-
ness of the TRP provided the phases of the signals are ac-
counted for.25 The third issue, however, is crucial.

The mismatch between the real and the model media is
comprised of two fundamental aspects: the boundary condi-
tions and the physical parameters !moduli and density". The
medium physical parameters can be only estimated with a
certain level of uncertainty. The influence of such uncertainty
has been experimentally investigated in the context of study-
ing the performance of the TRP in the presence of time-
evolving random media. For instance, Tourin et al. investi-
gated the amount of perturbation of the TR focus, in water
and in the presence of a random distribution of rigid point-
like scatterers,26 as a consequence of varying the speed of
sound between the FP and TRBP stages, changing the water
temperature, or varying the scatterer distribution configura-
tion !different realization of the random medium".27 Kim et
al. investigated the robustness of the TRP in an ocean wave-
guide, whose sound speed vertical profile changes in time
due to internal waves.28 Liu et al. performed similar studies
in the case of imaging targets or sources embedded in clutter
using the TRP with electromagnetic waves,29 while Bal and
Verastegui30 investigated theoretically the robustness of the
TRP to medium mismatching considering highly multiple
scattering regimes. In all cases, the robustness of the TRP
was extremely weakened by perturbations in the properties
of the medium. Indeed, as proven by several studies in the
field of coda wave interferometry,31 multipathing in a me-
dium increases the dependence of the wavefields on the me-
dium structure, and a small change in the propagation me-
dium implies a significant change in the signals recorded at a
certain location due to the propagation. In the field of seismic
imaging, this medium mismatch issue has been the object of
an intense and thorough investigation.32 RTM is highly af-
fected by medium mismatch because of the use of numerical
simulation for estimating both the FP and TRBP wavefields.
The extreme sensitivity of wave propagation to medium mis-
match in the presence of highly heterogeneous media, as the
Earth crust is, has been exploited not only for imaging their

structure but also for solving inverse problems, i.e., for esti-
mating the medium’s physical parameters such as wave ve-
locity and mass volumetric density.33

In this work, we specifically investigate two sources of
inaccuracies in modeling:

• the elastic constants of the modeled medium for the
TRBP simulation do not match those of the real me-
dium, but both media are homogeneous !Sec. III" and

• the model medium is assumed homogeneous, while
that is not the case for the real medium, which is, more
likely, a random medium or it might contain small,
hidden inclusions !Sec. IV".

In both cases, we analyze the robustness of TRA imag-
ing approaches, exploiting the numerical simulation of the
TRBP. In Sec. V, we provide some suggestions for improving
the robustness of the TRP to medium perturbations and un-
certainties.

II. NUMERICAL TR

A. The case study

We created a model of a two dimensional !2D" sample,
as shown in Fig. 1!a", in order to perform our analysis. Due
to the large number of simulations required, 3D calculations
were not extensively conducted; however, we performed a
few similar tests in 3D !not reported here for brevity" in
order to check for consistency of the results obtained in 2D.
The sample is a rectangular !10.0!6.0 cm2" aluminum
!elastic isotropic" sample, with longitudinal wave velocity
vL=6498 m s−1, shear wave velocity vS=4346 m s−1, and
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FIG. 1. !Color online" !a" Schematic representation of the 2D sample used
for the case study. The sample is an aluminum plate !10!6 cm2". The
rectangle represents the source position, while squares and circles are lo-
cated at the receivers positions. !b" Source signal corresponding to a force
applied at the source position and oriented in the X direction.
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density "=2700 kg m−3. We neglected the modeling of the
viscoelastic properties, giving rise to attenuation.

We placed a source at a position r0= !0.0,2.0" cm. This
source applied a forcing in the form of a sine signal modu-
lated in amplitude by a squared sine signal #see Fig. 1!b"$,

f!r0,t" = sin!2#$t"sin2!#t/%" . !1"

The source, in general, a vector, in this case was assumed to
be a force parallel to the X direction. The central frequency
was $=240 kHz and the source duration was %=20.8 &s.
The central frequency corresponds to a longitudinal central
wavelength of about 27 mm and the source signal contains
about 5 cycles.

Fifty three pointlike receivers were located on the
sample boundaries, as indicated in Fig. 1!a". They were
equally spaced !5 mm apart" and recorded a maximum
1.3 ms long displacement vector signal. The two components
!along the X and Y directions" were recorded independently.
Finally, we assumed free boundary conditions at the four
boundaries of the sample #except for the source position!s"$.

B. Numerical simulation of elastic wave
propagation

For the numerical simulation of elastic wave propaga-
tion, we used a 2D full displacement explicit FDTD code,
based on the local interaction simulation approach !LISA"-
spring model.34 The LISA-spring model was originally de-
veloped for simulating elastic wave propagation in highly
heterogeneous materials, containing high density of inter-
faces. It was then expanded in order to take into account
nonclassical !nonequilibrium" nonlinear elastic behaviors
due to volumetric distribution of microcracks34 and/or local-
ized macroscopic ones. The validation of the model along
with a comparison to theoretical expectations and real data
has been reported elsewhere.35,36

In our case, the modeled specimen !homogeneous" was
discretized into a 500!300-node uniform structured Carte-
sian grid, corresponding to a mesh step '=0.2 mm along
each axis. This FDTD scheme must satisfy convergence and
stability conditions. For the case considered, the choice of '
ensured that each central wavelength of the wavefield was
described by a sufficiently large number of points !about
140". The choice of a temporal step (=0.025 &s satisfies the
Courant–Friedrichs–Lewy condition.

C. Computational imaging using the TRP

For the imaging technique based on TRA and numerical
simulation, the FP, is expected to be performed experimen-
tally, i.e., the receivers record the signals generated by the
wavefields propagated in a real-world specimen. Then, these
signals are time reversed and used as time-varying boundary
conditions for the backward propagation, performed numeri-
cally in a simulated medium ideally the same as the real one.
In this work, we tested this technique in locating an active
source and reconstructing it. We performed the FP step also
using a numerical simulation, instead of using the experi-
mentally acquired signals, in order to be able to isolate the
effects of the uncertainties in the elastic constants values.

For the back propagation stage, two parameters must be
fixed: the number n of receivers recording the signals !the
number of TR mirror elements" and the length ) of these
signals used as input for the back propagation. In order to
illustrate general behaviors, we considered three values of n
!n=53, 20, and 7" and three values of ) !)=1.2, 0.6, and
0.1 ms". The three ) cases will be called, from now on, long,
medium, and short coda, respectively. The term “coda” refers
to long lasting signals due to reverberation or multiple scat-
tering. In the n=20 case, only transducers denoted with a
square in Fig. 1!a" are used. In the n=7 case, only transduc-
ers labeled with a number in Fig. 1!a" are used.

The computational imaging approach based on the TRP
consists of the following steps.

!i" Let us call ui!t" the vector displacement signal re-
corded by the receiver i during the FP, !i=1, . . . ,n".
Again, these signals were computed in this work via a
numerical simulation, in general, they are measured
during experiments. Also, we note that these signals
are two-component vectors, even though, as shown
elsewhere,37 the TR procedure works well even with
only one component of the signal.

!ii" The reversed signals were generated as ui
rev!t"=ui!)

− t" !0* t*); i=1, . . . ,n"; and
!iii" Backward propagation simulations were then per-

formed using the receivers as transducers injecting the
full vector signals ui

rev!t", after conversion into accel-
erations in order to be applied as forcing signals. Both
vector components of the converted versions of ui

rev!t"
were injected. In what follows, we will, in general,
indicate with gr a vector wavefield, with the dimen-
sion of a force, recorded during the backward propa-
gation at a specific spatial location r.

Full displacement numerical simulations provide the
means to calculate whatever wavefield is required !velocity,
strain, and stress" at all positions in space and time. Three
quantities are of particular interest in the analysis of the ro-
bustness of the TR approach:

• the signal !force" recorded during the back propaga-
tion at the position of the original source as a function
of time: gs!t". Again, this is a vector, but in our analy-
sis we concentrated only on its X-component, gs!t".
Indeed, being the original source signal parallel to the
X-direction, the Y- component at the focal position is
always negligible. gs!t" provides information about the
temporal compression of the time reversed signal. In a
perfect TR experiment, gs!t"= f!r0 ,)− t";

• the stress field at the time of focusing, i.e., the spatial
distribution of the stresses in the sample. We will not
analyse this quantity in this paper; and

• the maximum-in-time acceleration !or stress or dis-
placement" field distribution in the sample, i.e., the
matrix defined by the maximum value reached by the
acceleration !stress and displacement" at each spatial
location:
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M!i, j" = + max!%gij!i"%" . !2"

Here %gij!t"% is the norm of the force vector, computed during
the backward propagation, at node !i , j" and time t and the
maximum is calculated in the whole time interval of the
simulation. + is a renormalization constant from force to
acceleration. The matrix M gives information about the spa-
tial focusing of the signal.

In Fig. 2 !left column", we analyze the quality of the
temporal focusing for different choices of n and ). From the
top to the bottom, the following cases are considered: n
=53, )=0.1 ms; n=53, )=1.2 ms; n=20, )=1.2 ms; and
n=7, )=1.2 ms. In all cases, the temporal compression is
good and the signal reconstruction excellent !a zoom around
the focal time is reported in the right column". Also spatial
retrofocalization, for the same cases, is remarkable !see Fig.
3". The size of the spot is approximately , /4, in agreement
with the diffraction limit. Finally, we mention that, as ex-
pected, results for a short coda with n=7 are not as good as
those reported here due to the apparent decrease in virtual
sources corresponding to decreasing the coda length.

We can conclude this section remarking that, as ex-
pected, the computational TRA imaging procedure is very
robust in locating the active source, independently from the

number of transducers and coda length !within limits", pro-
vided the sample used in the simulations matches perfectly
the “real” sample !the one used to simulate the FP".

III. ROBUSTNESS AND UNCERTAINTIES IN THE
ELASTIC CONSTANTS

A. Robustness of the approach

Here, we address the importance of using the correct
physical properties in the model. Our approach is to fix the
elastic constants Sijkl! of the TRBP medium as k times the real
elastic constants Sijkl,

Sijkl! = kSijkl. !3"

We set the parameter k, simulating the mismatch between the
media, within the range of 0.95*k*1.15. Note that this
interval corresponds to a mismatch of the wave velocity
ranging between −2.5% and +7%. k=1 means that the simu-
lation medium matches perfectly the real one. This choice in
implementing the medium mismatch is a simplification.
Adopting the same deviation from actual values for all the
elastic constants corresponds to !a" having similar error prob-
ability distribution for each elastic constant, the difference,
for example, just regarding the mean value, and !b" having
the same deviation from the actual value in sampling each of
them. Both of these conditions may not be generally matched
in laboratory measurements. However, this simplification al-
lows one to investigate the first order effects of medium mis-
match using a single control parameter, k.

The temporal retrofocalization of the wavefield is ana-
lyzed in Fig. 4 !left column", for n=53. From the top to the
bottom, we considered these cases: )=0.6 ms, k=1; )

FIG. 2. !Color online" Left column: temporal focusing of the time reversed
wavefield at the FP source position for different choices of the parameters n
and ), respectively, the number of sensors for the TRP and the temporal
length of the signal portion used in the time inversion. The wavefield is
normalized to its maximum value in time !gmax". First row: n=53, )
=0.1 ms. Second row: n=53, )=1.2 ms. Third row: n=20, )=1.2 ms.
Fourth row: n=7, )=1.2 ms. The backpropagation medium perfectly
matches the real medium !FP". The right column provides a zoom around
the retrofocal time to appreciate the quality of the reconstruction of the
source signal shape #compared with Fig. 1!b"$.

FIG. 3. !Color online" Spatial retrofocusing of the backpropagating wave-
field onto the original source location for different choices of the parameters
n and ), respectively, the number of sensors for the TRP and the length of
the signal portion used in the time inversion. The backpropagation medium
perfectly matches the real medium !FP". The plots report the matrix M
!maximum-in-time acceleration field" defined in Eq. !2". Upper left: n=53,
)=0.1 ms. Upper right: n=53, )=1.2 ms. Lower left: n=20, )=1.2 ms.
Lower right: n=7, )=1.2 ms.
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=0.6 ms, k=0.992; )=0.6 ms, k=1.05; and )=0.1 ms, k
=1.05. In the first three rows, we observe that increasing the
error in the estimation of the elastic constants, the quality of
the focusing becomes progressively poorer. While the case
k=0.992 !second row" gives approximately the same results
as the ideal case !k=1, first row", the source signal is not at
all reconstructed already for k=1.05, i.e., for an error on the
velocity estimation of only 2.5%. The results are even worst
for larger values of k when the TR procedure fails even if a
short coda is used !results not reported in this work for brev-
ity". However, as shown in the last row of Fig. 4, an im-
provement in the retrofocalization !for the same value of k,
k=1.05" is obtained when a short coda is used. This is a
direct result of the extreme sensitiveness of multipathing re-
gimes to medium mismatch;38 meaning, the cumulative error
is decreased using less coda, thereby improving the result.
The spatial focusing supports the conclusions. The results are
reported in Fig. 5.

To quantify the robustness of the TR procedure as a
function of n and ), we define temporal and spatial retrofo-
cusing evaluation metrics,

- = max#gs!t"$/&%gs!t"%' , !4"

. = max#M$/&M' . !5"

The maximum and mean !&·'" values for the definition of the
temporal indicator - are calculated in an interval around the

focal time: 0.5)* t*1.2) !the results are qualitatively inde-
pendent of the choice of this interval". The maximum and
mean values for the spatial indicator, ., are calculated on the
entire sample. Note that the temporal indicator gives only
information about temporal compression of the signal and
not on the quality of the signal reconstruction, as will be
discussed in Sec. III B !see comments regarding Fig. 13".

The values of - and . are reported versus k for the three
lengths of the time window in Figs. 6–8 !n=53, n=20, n
=7, respectively". The results, independent of the values of
n, indicate that

• the TR procedure is not robust when the TRBP mod-
eled medium does not match well the real medium.
When k/1.1 !5% error in the propagation velocities",
independent of ), the metrics !both temporal and spa-
tial" fall within the noise level !indicated as a dotted
black line and defined in the caption of Fig. 6".

• The robustness is increased when the time window is
shorter. However, that results in a reduction in the
peak quality !value of the indicator for k=1", at least
for the temporal metric.

B. Enhancing robustness

The results reported in Sec. III A indicate that computa-
tional TR imaging is not sufficiently robust. Indeed, the sig-
nals recorded during the backward propagation at the origi-
nal source position are, in the case k=1 !no medium
mismatch", almost one order of magnitude larger than the
signals obtained with other values of k, i.e., when focusing is
not occurring !either not perfectly or not at all". However, as

FIG. 4. !Color online" Temporal focusing of the time reversed signal at the
source position when the backpropagation medium does not correspond to
the real medium. Here, we used n=53 receivers. When a long coda is used,
retrofocalization is good for k=1 and k=0.992 !upper two rows", but not for
k=1.05 !third row". Using a shorter inverted signal !short coda", the quality
of retrofocalization for k=1.05 is better !last row". The time signals at the
source position are normalized to 1. See also Fig. 5.

FIG. 5. !Color online" Spatial focusing of the time reversed signal at the
source position when the backpropagation medium does not correspond to
the real medium !same case as in Fig. 4". Here, we used n=53 receivers.
When a long coda is used, retrofocalization is good for k=1 and k=0.992
!left and right plots in the top row", but not for k=1.05 !left plot in the
bottom row". Still for k=1.05, using a shorter inverted signal !short coda",
the quality of retrofocalization is better !right plot of the second row".
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we show in this work, a significant improvement in the ro-
bustness can be obtained. In this subsection, we consider
everywhere n=53 and )=0.6 ms.

First of all, we note that time compressing/stretching the
signals ui

rev!t", before using them as sources for the backward
propagation, corresponds to “artificially” create experimental
signals obtained as if the real medium had different elastic
constants, all rescaled by the same factor, given by the
square of the compression/stretching parameter.

Starting from these observations, we can define a new
time-reversed signal at each receiver i, ũi

rev!t", starting from
the one measured during the FP, ui

rev!t". This new signal is
constructed as the linear superposition of its original version
and of other signals obtained from it by time scaling. The
time scaling consists of both a compression and a dilation
part,

ũi
rev!t" = ui

rev!t" + (
j=1

Z

)ui
rev#!1 − 0 j"t$ + ui

rev#!1 + 0 j"t$* , !6"

where !110 j" are the time scaling parameters and Z is the
total number of different time scaling used. The back propa-
gation is then performed using the ũi

rev!t" as sources at the
receivers positions. Equation !6" can be applied to experi-
mentally measured signals as well but, in such case, it may

be necessary to oversample ui
rev!t", ∀i=1, . . . ,n, before their

temporal rescaling.
In Eq. !6", each term of the sum over the index j takes

into account the effect of a certain degree of elastic constants
mismatch, being it either overestimation #!1+0 j" time scal-
ing factor$ or underestimation #!1−0 j"$. Rebroadcasting
these new signals as sources for the backward propagation,
we increase the probability of obtaining TR focusing: some
of the compressed/stretched components of each new signal
more likely contribute to the constructive interference lead-
ing to TR focusing than the simple signal ui

rev!t".
An example of the results obtained with ũi

rev!t" is re-
ported in Fig. 9 for Z=1 and a time compression/dilation of
the signal of 10% !01=0.1". The temporal focus at the source
when k=1 is almost the same using the standard approach
!first row: Z=0" or using the superposition of three inverted
signals !second row: Z=1, 01=0.1", thus showing that the
use of signals modified using Eq. !6" does not destroy the
retrofocalization. On the contrary, for k=0.975, the standard
approach !third row" fails to obtain excellent focalization,
while the approach proposed here provides a satisfactory re-
sult !last row". The same is valid also for spatial focusing
!Fig. 10".

Figure 11 shows the temporal and spatial evaluation met-
rics for Z=0, Z=1, and Z=2, with 0 j =0.05j, ∀j=1,2. Both
- and . still fall below the noise level for large errors in the
elastic constant estimation. However, the robustness of the
approach increases with Z, along with, as expected, a reduc-
tion in the indicator in the case k=1.

FIG. 6. !Color online" Temporal !upper plot" and spatial !lower plot" metrics
as a function of k, for a choice of long, medium, and short coda of the
inverted temporal signals. Case with a large number of receivers: n=53. For
the definitions see Eqs. !4" and !5". The dotted lines in the plots represent the
noise level: the noise temporal indicator level is defined as the metric cal-
culated on a signal recorded far from the focal point; the noise spatial
indicator level is calculated excluding from the mean and maxima calcula-
tions the focal region of the matrix M.

FIG. 7. !Color online" Temporal !upper plot" and spatial !lower plot" metrics
as a function of k, for a choice of long, medium, and short coda of the
inverted temporal signals. Case with an intermediate number of receivers:
n=20. See also Fig. 6.
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Finally, in Fig. 12 we analyze the evolution of the tem-
poral !upper plot" and spatial !lower plot" metrics as a func-
tion of Z for different values of k. As expected, for k=1, the
indicators remain very good for each value of Z. Indeed, the
spatial metric decreases slightly for increasing Z, as ex-
pected. This is not the case for the temporal metric, which
increases with Z, remaining always very high, thus indicating
good focus. As already remarked, - provides information
about temporal compression and not about the reconstruction
of the source signal. Indeed, in Fig. 13 the signals recorded
at the source position for k=1 are shown for Z=0 !upper
plot" and Z=2 !lower plot". As visible, even though the met-
ric is different for the two cases, the temporal compression is
almost the same. The signal seems somewhat better recon-
structed for Z=0 !for which the temporal metric is lower":
compare the plots in the right column with the plot in Fig.
1!b". Therefore, we can say that changes in the temporal
evaluation metric for k=1 are to be considered as negligible.

On the contrary, for k/1, Fig. 12 shows an improve-
ment in both temporal and spatial metrics with increasing Z.
A plateau is reached, where the metrics are almost indepen-
dent from Z, as for the k=1 case. Exception is the case k
=1.15, where the corrections introduced are not sufficient to
provide retrofocus. Finally, we point out that a tendency to a
reduction in the metrics for larger Z suggests the existence of
a limit Z value for optimization of the procedure. This limit
will not further be investigated, being dependent on the con-
figuration adopted.

FIG. 8. !Color online" Temporal !upper plot" and spatial !lower plot" metrics
as a function of k, for a choice of long, medium, and short coda of the
inverted temporal signals. Case with a small number of receivers: n=7. See
also Fig. 6.

FIG. 9. !Color online" Temporal focusing of the time reversed signal on the
source position when the correction on the reversal signals described by Eq.
!6" is used, with Z=1 and 01=0.1. When k=1, there is almost no difference
between the results using the standard approach !Z=0, upper row" or the
corrected signals !Z=1, second row". When k=0.975, while the standard
approach fails !third row", the correction proposed here makes the compu-
tational TRA imaging sufficiently robust !last row". The time signals at the
source position are normalised to 1. See also Fig. 10.

FIG. 10. !Color online" Spatial focusing of the time reversed signal on the
source position when the correction on the reversal signals described by Eq.
!6" is used, with Z=1 and 01=0.1. When k=1 !upper row", there is almost
no difference between the results using the standard approach !Z=0, left" or
the corrected signals !Z=1, right". When k=0.975 !second row", while the
standard approach fails !left", the correction proposed here makes the com-
putational TRA imaging sufficiently robust !right".
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IV. ROBUSTNESS AND HETEROGENEITY OF THE
MEDIUM

The second approximation usually performed in the
ideal medium is that it is often assumed homogeneous, while
that is not necessarily the case for the real medium, which
may be a random medium or it might contain small hidden
inclusions. To investigate the robustness of computational
TR imaging in the case of heterogeneity of the real medium,
we modified the case study discussed above. In particular, we
performed new numerical simulations of the FP stage in or-
der to provide different sets of input signals for the following
three cases:

• random medium, i.e., the elastic constants of the alu-
minum plate are considered to be randomly distributed
about the exact values given in Sec. II A. We chose a
white noise distribution with zero average and 20%
strength, i.e., elastic constants that differ at most of
20% from the exact values;

• soft inclusion: we placed a small square inclusion,
centered at !7.0,3.0" cm and with 0.5 cm side, with
elastic constants 0.2 times the original values; and

• hard inclusion: a small square inclusion with elastic
constants five times the original ones, centered at
!7.0,3.0" cm with 0.5 cm side.

The three sets of time signals obtained for the three cases
were time reversed and each sent back in an “ideal” homo-
geneous medium with exact elastic constants !k=1". For the

TRBP, we used n=53 and )=0.6 ms. The results of the
simulations are reported in Fig. 14: random medium, soft,
and hard inclusions, from the top to the bottom, respectively.
In all cases, temporal compression, signal shape reconstruc-
tion, and spatial focusing are excellent. This is to be expected
since the inclusion is small and most of the paths from the
source to the receivers are not much influenced by its pres-
ence. Based on our findings, larger inclusions !or impedance
mismatch" would be expected to affect the robustness of the
computational TRA imaging method.

The influence of nonlinear scatterers, e.g., cracks, lo-
cated by TR imaging methods combined with nonlinear elas-
tic wave spectroscopy techniques10,12–14 is not analyzed in
this work. However, as shown by Gliozzi et al.,12 we do not

FIG. 11. !Color online" Temporal !upper plot" and spatial !lower plot" met-
rics as a function of k for n=53 and )=0.6 ms. The curves show that
increasing the number Z of signals used to correct the inverted signals to be
backpropagated #see Eq. !6"$ the robustness of the computational TRA im-
aging is improved.

FIG. 12. !Color online" Temporal !upper plot" and spatial !lower plot" met-
rics as a function of Z for n=53 and )=0.6 ms. Here, 0 j =0.05j.

FIG. 13. !Color online" Temporal signals at the source position for n=53,
D=0.6 ms, and k=1. Upper plot: Z=0; lower plot: Z=2. The right column
represents a zoom around focal time. Signals are normalized to one.

114911-8 Scalerandi, Griffa, and Johnson J. Appl. Phys. 106, 114911 "2009!

Downloaded 11 Dec 2009 to 152.88.50.30. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



expect such nonlinear scatterers to affect significantly the
robust TR imaging procedure presented here, unless the scat-
terers themselves are very large.

V. CONCLUSIONS

In this paper, we have analyzed the robustness of a TRA-
based computational approach to locating a source/scatterer.
According to this approach, the TRBP of some experimen-
tally measured signals is performed numerically. In this
work, these “experimental” signals are generated via numeri-
cal simulations as well. We have investigated the effects due
to uncertainties in the elastic constants of the propagation
medium leading to a mismatch between the real FP medium
and the one modeled for the simulated back propagation. We
have shown that this TR approach to locating a source/
scatterer is not robust with respect to under/over estimation
of the elastic wave velocities in the sample. Already uncer-
tainties of about 2% are sufficient to destroy the retrofocal-
ization at the source of the elastic wavefields.

We have shown that when the velocity fields are not well
characterized, it is better to use small portions of the FP
signals for the TRP. However, that is not always optimal
from the experimental point of view since the use of a short
TR interval has to be compensated for by the use of a large
number of receivers.

Our implementation of the elastic constants mismatch
between the forward and backward propagation’s media as-
sumes an identical relative difference for each elastic con-
stant. Future work should address the role of different de-
grees of mismatch in the distinct elastic constants. Indeed, a
larger deviation in the estimate of one elastic constant com-
pared to the others can perturb significantly the scattering
angles at interfaces. In the case of highly reverberant or mul-
tiply scattering media, this change in scattering angles mag-
nifies the destruction of the TR focusing.

We have also proposed a method aiming at improving
the robustness of the imaging procedure by using the super-
position of properly time-scaled FP signals. This method ex-
ploits in a different way the same principle at the basis of the
approach of Liu et al.,29,39 i.e., sampling of the medium’s
elastic response from an ensamble of realizations of the me-
dium itself. However, in our case the time scaling of the FP
signals is equivalent to obtaining the respective signals with
media having different elastic constansts under the assump-
tion that all the elastic constants have been rescaled by the
same amount. A single FP is sufficient instead of several. The
technique of Liu et al. applies specifically to random media
and requires performing several FP experiments in order to
measure different Green’s functions in correspondence to
different realizations of the medium itself. The efficiency of
our method is constrained by the assumption of identical
relative errors for all the elastic constants. Although this con-
dition may not be achieved in some experiments, the ap-
proach presented in this work can still be adopted with some
modifications. For instance, a possible solution could consist
in performing several back propagation simulations using the
strectching/dilation processing on the FP signals as suggested
here but varying, from one simulation to the other, the scal-
ing parameter k for the elastic constants. In addition, the
method proposed in this article can be very useful in several
realistic cases, for example, when the sample undergoes per-
turbations that change all of its elastic properties of the same
relative amount, e.g., temperature fluctuations in time.27,28

Finally, we have shown that the computational TRA im-
aging method is very robust in the presence of the heteroge-
neities of the real medium. Random fluctuations in the elastic
constants !not measurable" or the presence of small !soft or
hard" heterogeneities, not included in the model of the me-
dium for the TRBP because it is unknown, does not affect
much the reconstruction process.

The results reported in this work prove, in our opinion,
the feasibility of numerical backpropagation of real experi-
mental data, also when the medium properties cannot be ac-
curately well estimated. The effects due to the boundary con-
ditions of the sample are currently under investigation and
application to real data is planned for the future.
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